65 research outputs found

    A Study on Utilization of Polarimetric SAR Data in Planning a Smart City

    Get PDF
    AbstractIn the present world, there is a huge requirement for a truly efficient city not only operating in an integrated mode, but also to optimize the resources of each system to have better eco-friendly livelihood. Currently, this novel concept has led to the establishment of smart city with integration among informational and operational efficiency. With recent advances in remote sensing especially in the field of Polarimetric Synthetic Aperture Radar (SAR) data, using suitable polarimetric target decomposition techniques, data can be classified for further utilization in remote sensing applications. As a part of this exploration, a study has been taken to understand the utilisation of polarimetric data in building a smart city by exploiting the available resources in a given urban area. Different types of polarimetric decomposition techniques are applied on the data along with polarimetric speckle filters where classification of targets is performed based on the scattering mechanism of the polarized wave with each target in the scene. Encouraging preliminary results were obtained in the study using polarimetric SAR data adding another dimension in planning a smart city

    Reliability improvement and loss reduction in radial distribution system with network reconfiguration algorithms using loss sensitivity factor

    Get PDF
    Studies on load flow in electrical distribution system have always been an area of interest for research from the previous few years. Various approaches and techniques are brought into light for load flow studies within the system and simulation tools are being used to work out on varied characteristics of system. This study concentrates on these approaches and the improvements made to the already existing techniques considering time and the algorithms complexity. Also, the paper explains the network reconfiguration (NR) techniques considered in reconfiguring radial distribution network (RDN) to reduce power losses in distribution system and delivers an approach to how various network reconfiguration techniques support loss reduction and improvement of reliability in the electrical distribution network

    Watch Dog for a Plant House

    Get PDF
    The determination in selecting this project is to reduce the effects by the attributes of the nature on the plants. The proposed project we will help the user to check and maintain all the essential things like temperature, moisture in air, water content in soil and salinity in the soil required for an optimal growth of a plant. The Plant House maintenance by the user in a dynamical process is the goal of our project. In the existing system there should be a person in-charge in the room where the trees are planted and grown, to check the temperature and the other attributes which are to be maintained. To reduce the human presence in the process, in the existing system we construct a Greenhouse application which will respond to the changes in the attributes of the environment. The optimal growing environment of the different plants are stored in to the database. The application consists of a main home page where we can see the different room, if the user need to add a room he can add it. The user is recommended to enter required values for the Temperature, Humidity, Water, Fertilizer, Plant Bed, and Lightning, which are the essential needs for a plant growth. Sensors are maintained by the user, values which should match with the optimal values of the plant given by the user in the database. The fields can also be updated and also the room can also be deleted

    Cord Blood Stem Cells Inhibit Epidermal Growth Factor Receptor Translocation to Mitochondria in Glioblastoma

    Get PDF
    Overexpression of EGFR is one of the most frequently diagnosed genetic aberrations of glioblastoma multiforme (GBM). EGFR signaling is involved in diverse cellular functions and is dependent on the type of preferred receptor complexes. EGFR translocation to mitochondria has been reported recently in different cancer types. However, mechanistic aspects of EGFR translocation to mitochondria in GBM have not been evaluated to date.In the present study, we analyzed the expression of EGFR in GBM-patient derived specimens using immunohistochemistry, reverse-transcription based PCR and Western blotting techniques. In clinical samples, EGFR co-localizes with FAK in mitochondria. We evaluated this previous observation in standard glioma cell lines and in vivo mice xenografts. We further analyzed the effect of human umbilical cord blood stem cells (hUCBSC) on the inhibition of EGFR expression and EGFR signaling in glioma cells and xenografts. Treatment with hUCBSC inhibited the expression of EGFR and its co-localization with FAK in glioma cells. Also, hUCBSC inhibited the co-localization of activated forms of EGFR, FAK and c-Src in mitochondria of glioma cells and xenografts. In addition, hUCBSC also inhibited EGFR signaling proteins in glioma cells both in vitro and in vivo.We have shown that hUCBSC treatments inhibit phosphorylation of EGFR, FAK and c-Src forms. Our findings associate EGFR expression and its localization to mitochondria with specific biological functions in GBM cells and provide relevant preclinical information that can be used for the development of effective hUCBSC-based therapies

    Desalination of Water

    Get PDF
    Water is very essential for all living beings. It covers nearly 70% of earth’s surface. Even though the major portion of earth is covered by water, there is severe shortage of drinking water in most of the countries across the world. Safe drinking water is vital for all forms of life though it does not provide any calories. Desalination of sea water appears as a solution for this problem. Advanced desalination technologies that are applied to seawater and brackish water prove to be effective alternatives in a variety of situations. This study mainly focuses on upcoming trends in modern desalination technologies and emphasizing the options offered by them. Desalination is a technique where the excess salts are removed from sea water or brackish water converting it into safe potable or usable water. Desalination methods are categorized into thermal processes and membrane processes. In this chapter we discuss about different thermal processes like multistage flash distillation, multiple effect distillation, vapour compression evaporation, cogeneration and solar water desalination. We also discuss about various categories of membrane processes like reverse osmosis, electro dialysis and membrane distillation methods. This chapter also concentrates on advantages and disadvantages and economical parameters involved in each of these methods

    Preparation and storage stability of amla (Phyllanthus emblica) based instant pulihora mix - a South Indian traditional food condiment

    Get PDF
    Amla (Phyllanthus emblica Linn) is an important crop, indigenous to Indian subcontinent, which is used in alternative medicine, health foods and herbal products. An attempt was made to add value to the highly perishable and seasonable raw material and produce a convenient, shelf stable instant mix for south Indian cuisines. The standardized instant amla pulihora mix (APM) consisted of amla powder (AP, 26%), roasted ground nuts, bengal gram, black gram, green chili, salt (18%) and spices. The titrable acidity of amla powder and amla pulihora mix was 15.1 and 6.4%, respectively. Amla pulihora mix was a rich source of Ca (191.18 mg/100 g), Fe (21.19 mg/100 g) and a considerable amount of proteins (11.2%). The total polyphenol content in amla powder and the amla pulihora mix was found to be 9989 and 3093 mg/100 g, respectively. HPLC analysis revealed that tannic acid and ascorbic acid contents of amla powder were 8102.1, 1601.21 mg/100 g, respectively, and ascorbic acid in amla pulihora mix was found to be 440.21 mg/100 g. Retention of ascorbic acid was higher in the amla pulihora mix (84%), when compared to amla powder (22%), over a storage period of six months. The antioxidant activity (IC50) of amla powder and the amla pulihora mix, as assayed by DPPH and ABTS, were 0.7 and 0.2 mg/ml and 0.28 and 0.17 mg/ml, respectively. Sensory evaluation of the amla pulihora mix indicated that the product was highly acceptable, when mixed with cooked rice in the ratio of 1: 6.9 w/w. The shelf-life of the product was 6 months with a sensory acceptability score of 8. The equilibrium moisture content- relative humidity studies indicated that both the amla powder and amla pulihora mix were non-hygroscopic and stable at room temperature (28Β±2 Β°C) up to 6 months when packed in metalized polyester polyethylene pouches. Microbiological analysis indicated both products as safe for consumption up to 6 months storage

    Upregulation of PTEN in Glioma Cells by Cord Blood Mesenchymal Stem Cells Inhibits Migration via Downregulation of the PI3K/Akt Pathway

    Get PDF
    PTEN (phosphatase and tensin homologue deleted on chromosome ten) is a tumor suppressor gene implicated in a wide variety of human cancers, including glioblastoma. PTEN is a major negative regulator of the PI3K/Akt signaling pathway. Most human gliomas show high levels of activated Akt, whereas less than half of these tumors carry PTEN mutations or homozygous deletions. The unique ability of mesenchymal stem cells to track down tumor cells makes them as potential therapeutic agents. Based on this capability, new therapeutic approaches have been developed using mesenchymal stem cells to cure glioblastoma. However, molecular mechanisms of interactions between glioma cells and stem cells are still unknown.In order to study the mechanisms by which migration of glioma cells can be inhibited by the upregulation of the PTEN gene, we studied two glioma cell lines (SNB19 and U251) and two glioma xenograft cell lines (4910 and 5310) alone and in co-culture with human umbilical cord blood-derived mesenchymal stem cells (hUCBSC). Co-cultures of glioma cells showed increased expression of PTEN as evaluated by immunofluorescence and immunoblotting assays. Upregulation of PTEN gene is correlated with the downregulation of many genes including Akt, JUN, MAPK14, PDK2, PI3K, PTK2, RAS and RAF1 as revealed by cDNA microarray analysis. These results have been confirmed by reverse-transcription based PCR analysis of PTEN and Akt genes. Upregulation of PTEN resulted in the inhibition of migration capability of glioma cells under in vitro conditions. Also, wound healing capability of glioma cells was significantly inhibited in co-culture with hUCBSC. Under in vivo conditions, intracranial tumor growth was inhibited by hUCBSC in nude mice. Further, hUCBSC upregulated PTEN and decreased the levels of XIAP and Akt, which are responsible for the inhibition of tumor growth in the mouse brain.Our studies indicated that upregulation of PTEN by hUCBSC in glioma cells and in the nude mice tumors downregulated Akt and PI3K signaling pathway molecules. This resulted in the inhibition of migration as well as wound healing property of the glioma cells. Taken together, our results suggest hUCBSC as a therapeutic agent in treating malignant gliomas

    Controlling the Transverse Proton Relaxivity of Magnetic Graphene Oxide

    Get PDF
    The engineering of materials with controlled magnetic properties by means other than a magnetic feld is of great interest in nanotechnology. In this study, we report engineered magnetic graphene oxide (MGO) in the nanocomposite form of iron oxide nanoparticles (IO)-graphene oxide (GO) with tunable core magnetism and magnetic resonance transverse relaxivity (r2). These tunable properties are obtained by varying the IO content on GO. The MGO series exhibits r2 values analogous to those observed in conventional single core and cluster forms of IO in diferent size regimesβ€”motional averaging regime (MAR), static dephasing regime (SDR), and echo-limiting regime (ELR) or slow motion regime (SMR). The maximum r2 of 162Β±5.703mMβˆ’1sβˆ’1 is attained for MGO with 28 weight percent (wt%) content of IO on GO and hydrodynamic diameter of 414 nm, which is associated with the SDR.These fndings demonstrate the clear potential of magnetic graphene oxide for magnetic resonance imaging (MRI) applications
    • …
    corecore